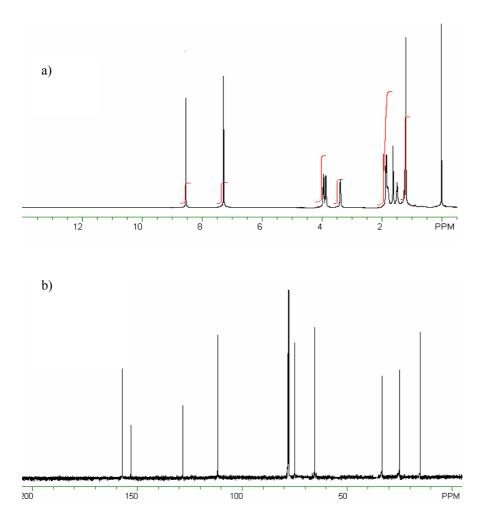
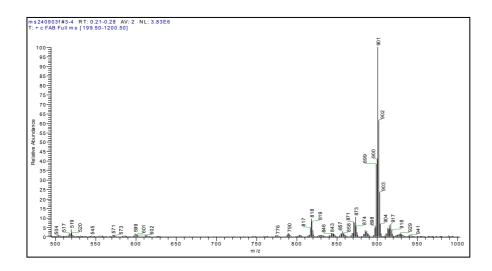
Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2004

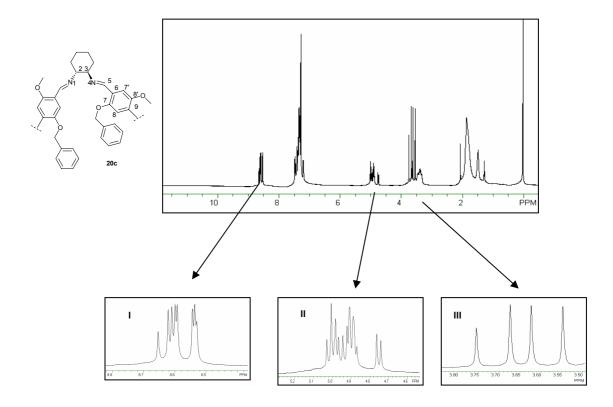

Supplementary information

The synthesis and conformation of oxygenated trianglimine macrocycles #

Nikolai Kuhnert^{*}, Ana Lopez-Periago and Giulia M. Rossignolo


Supramolecular and Biomolecular Chemistry Laboratory, School of Biomedical and Molecular Sciences, The University of Surrey, Guildford GU2 7XH, UK.

Additional Figure: a) ¹H-NMR (500 MHz) in CDCl₃ and b) ¹³C-NMR (67.5 MHz) spectra of compound **15a** in CDCl₃



Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2004

Additional Figure: FAB mass spectrum of 15a

Additional Figure: Expanded ¹H NMR spectrum of **20c** in CDCl₃ (500 MHz) with enlarged imine and OR regions (enlargements **I-III** are shown below)

Supplementary experimental section:

1,4-Dibromo-2,5-dipropoxybenzene 13b⁴⁴

A solution of bromine (530 µl, 1.65 g, 10.31 mmol) in glacial acetic acid (2 ml) was added to a solution of 1.4-dipropoxybenzene 12c (1 g, 5.15 mmol) and anhydrous potassium acetate (96 mg, 1.17 mmol) in glacial acetic acid (12 ml) at 17 °C. The solution was stirred for three hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from CH₂Cl₂ to give the title compound **13b** (317 mg, 17.5%), as light yellow powder; Rf 0.89 [Ethyl acetate-hexane (1:1)]; mp. 68 °C (lit.⁴⁴ 74 °C); IR v_{max} (nujol)/ cm⁻¹ 1462 (C=C), 1375, 1269 (C-O), 1021, 809, 455 (C-Br); ¹H-NMR (270 MHz, CDCl₃) δ_H: 7.08 (2H, s, -H₃ and -H₆), 3.89 (4H, t, J 7.6, -OCH₂CH₂CH₃), 1.81 (4H, sextet, J 7.6, -OCH₂CH₂CH₃), 1.4 (6H, t, J 7.6, -OCH₂CH₂CH₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_C : 150.74 (C₂-O), 119.13 (C₃), 111.77 (C₁-Br), 66.47 (-OCH₂CH₂CH₃), 23.01 (-OCH₂CH₂CH₃), 10.95 (-OCH₂CH₂CH₃); *m/z* (EI) 353.9/ 351.9/ 349.9 (20%, M⁺⁸¹Br, ⁷⁹Br), 311.9/ 309.9/ 307.9 (10%, M + H^{+ 81}Br, ⁷⁹Br -CH₂CH₂CH₃), 269.9/ 267.9/ 265.9 (100%, M + H₂⁺ ⁸¹Br, ⁷⁹Br-2 CH₂CH₂CH₃); CHN requires for C₁₂H₁₆Br₂O₂: C 40.94%, H 4.58%; found: C 41.21%, H 4.64%.

1,4-Dibromo-2,5-dibutoxybenzene 13c

A solution of bromine (462 μ l, 1.4 g, 9 mmol) in glacial acetic acid (2 ml) was added to a solution of 1,4-dibutoxybenzene **12c** (1 g, 4.5 mmol) and anhydrous potassium acetate (84 mg, 1.02 mmol) in glacial acetic acid (12 ml) at 17 °C. The solution was stirred for three hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from CH₂Cl₂ to give the *title compound* **13c** (1.38 g, 80.6%) as a light orange powder; R_f 0.85 [Ethyl acetate-hexane (1:1)]; mp. 72 °C; IR v_{max} (nujol)/ cm⁻¹ 1499 (C=C), 1465, 1376, 1275 (C-O), 1037, 846 (C-Br); ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 7.08 (2H, s, *-H*₃ and *-H*₆), 3.95 (4H, t, J 6.1, *-OCH*₂CH₂CH₂CH₂CH₃), 1.76 (4H, quintet, J 6.1, *-OCH*₂CH₂CH₂CH₃), 1.56 (4H, sextet, J 6.1, *-OCH*₂CH₂CH₃), 0.97 (6H, t, J 6.1, *-OCH*₂CH₂CH₂CH₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_{C} : 150.77 (*C*₂-O), 119.08 (*C*₃), 111.76 (*C*₁-Br), 70.55 (*-OCH*₂CH₂CH₂CH₃), 31.67 (*-OCH*₂CH₂CH₃), 19.66 (*-OCH*₂CH₂CH₂CH₃), 14.29 (*-OCH*₂CH₂CH₃); found (EI) 380.9910 [M + H⁺], C₁₄H₂₁⁸¹Br⁷⁹BrO₂ requires 380.9882; *m/z* (EI) 382.1/ 380.1/ 378.1 (25%, M^{+ 81}Br, ⁷⁹Br), 326/ 324/ 322 (10%, M + H^{+ 81}Br, ⁷⁹Br - C₄H₉), 270/ 268/ 266 (100%, M + H₂^{2+ 81}Br, ⁷⁹Br-2 C₄H₉); CHN requires for C₁₄H₂₀Br₂O₂: C 44.24%, H 5.30%; found: C 45.18%, H 5.59%.

1,4-Dibromo-2,5-di(benzyloxy)benzene 13d⁵²

A solution of bromine (277 µl, 0.863 g, 5.40 mmol) in glacial acetic acid (5 ml) was added to a solution of 1,4-di(benzyloxy)benzene **12d** (0.8 g, 2.70 mmol) and anhydrous potassium acetate (51.4 mg, 0.630 mmol) in glacial acetic acid (60 ml) at 17 °C. The solution was stirred for three hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from CH₂Cl₂ to give the title compound **13d** as light yellow powder (851 mg, 70.4%); R_f 0.88 [Ethyl acetate-hexane (1:1)]; mp. 165-166 °C (lit.⁵² 167 °C); v_{max} (nujol)/ cm⁻¹ 1454 (C=C), 1379, 1274 (C-O), 1071, 841, 694 (C-Br); ¹H-NMR (270 MHz, CDCl₃) $\delta_{\rm H}$: 7.45 (4H, d, J 8.3, H_2 ·), 7.39 (4H, t, J 8.3, H_3 ·), 7.34 (2H, d, J 8.3, H_4 ·), 7.20 (2H, s, - H_3 and - H_6),

5.08 (4H, s, $-OCH_2Ph$); ¹³C-NMR (67.5 MHz, CDCl₃) δ_C : 154.24 (C_2 -O), 137.34 (C_1), 129.29 (C_3), 129.22 (C_4) 128.59 (C_2), 120.71 (C_1 -Br), 115.29 (C_3), 72.37 (-OCH₂Ph); found (EI) 448.9536, C₂₀H₁₆Br₂O₂ requires 448.9569; *m/z* (CI) 450/ 448/ 446 (10%, M^{+ 81}Br, ⁷⁹Br), 369/ 367 (15%, M^{+ 81}Br, ⁷⁹Br –⁷⁹Br), 279/ 277 (98%, M + H^{+ 81}Br- [⁸¹Br + C₇H₇]); (EI) 450/ 448/ 446 (100%, M^{+ 81}Br, ⁷⁹Br); CHN requires for C₂₀H₁₆Br₂O₂: C 53.60%, H 3.60%; found: C 53.44%, H 3.94%.

1,4-Dibromo-2,5-di[(4'-fluorobenzyl)oxy]benzene 13e

A solution of bromine (314 µl, 0.979 g, 6.13 mmol) in glacial acetic acid (5 ml) was added to a solution of di-(4²-fluorobenzyloxy)benzene **12e** (1 g, 3.06 mmol) and anhydrous potassium acetate (57.05 mg, 0.69 mmol) in glacial acetic acid (20 ml) at 17 °C. The solution was stirred for three hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from CH₂Cl₂-ethyl acetate (3:1) to give the *title compound* **13e** (0.734 g, 49.6%) as a light yellow powder; R_f 0.87 [Ethyl acetate-hexane (1:1)]; mp. 174-175 °C; IR v_{max} (nujol)/ cm⁻¹ 1463 (C=C), 1377, 1206 (C-O), 1062, 843, 721 (C-Br); ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 7.44 (4H, dd, J₁ 8.6, J₂ 5.3, *H*₂), 7.17 (2H, s, *H*₃), 7.08 (4H, dd, J₁ 8.6, J₂ 6.3, *H*₃), 5.03 (4H, s, -OC*H*₂-(*p*-F)C₄H₆); ¹³C-NMR (67.5 MHz, CDCl₃^{*}) δ_{C} : 129.42 (*C*₂, ³J_{CF} 8.6), 119.53 (*C*₃), 115.29 (*C*₃, ²J_{CF} 21.1), 114.91 (*C*₁-Br), 71.59 (-OCH₂Ph); *m/z* (EI) 486/ 484/ 482 (10%, M^{+ 81}Br, ⁷⁹Br); CHN requires for C₂₀H₁₄Br₂F₂O₂: C 49.62%, H 2.91%; found: C 50.21%, H 2.73%.

* Not all C_q are detectable due to the poor solubility of **13e** in CDCl₃.

2,5-Dipropoxyterephthalaldehyde 14b

n-BuLi (3.55 ml, 1.6 M in hexane, 5.68 mmol) was added to a solution of 1,4dibromo-2,5-dipropoxybenzene 13b (400 mg, 1.14 mmol) in anhydrous THF (3 ml) at - 78 °C under nitrogen atmosphere. The solution was stirred for two hours at the same temperature. Anhydrous DMF (441.6 µl, 5.68 mmol) was added to the reaction mixture. The solution was stirred for 30 minutes and then allowed to warm to room temperature. Distilled water (4 ml) and a 2 M solution of HCl (1.5 ml) were added. The solution was extracted with diethyl ether (3 x 15 ml). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with hexane-ethyl acetate (10:1) to give the title compound 14b (114 mg, 40.0%) as a yellow powder; R_f 0.32 [Hexane-ethyl acetate (10:1)]; mp. 73 °C; IR v_{max} (nujol)/cm⁻ ¹ 1692 (CO), 1499, 1379, 1163; ¹H-NMR (270 MHz, CDCl₃) δ_H: 10.52 (2H, s, -CHO), 7.42 (2H, s, -H₃ and -H₆), 4.05 (4H, t, J 7.5, -OCH₂CH₂CH₃), 1.82 (4H, sextet, J 7.5, -OCH₂CH₂CH₃), 1.06 (6H, t, J 7.5, -OCH₂CH₂CH₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_C: 190.23 (-CHO), 155.96 (C₂ and C₅), 124.80 (C₁ and C₄), 112.27 (C₃ and *C*₆), 71.24 (-OCH₂CH₂CH₃), 22.89 (-OCH₂CH₂CH₃) 10.96 (-OCH₂CH₂CH₃); *m/z* (EI) 251.2 (25%, M + H⁺), 222.2 (95%, M + H⁺- CHO); CHN requires for $C_{14}H_{18}O_4$: C 67.18%, H 7.25%; found C 66.97%, H 7.62%.

2,5-Dibutoxyterephthalaldehyde 14c

tert-BuLi (3.5 ml, 1.5 M in pentane, 5.26 mmol) was added to a solution of 1,4dibromo-2,5-dibutoxybenzene **13c** (400 mg, 1.05 mmol) in anhydrous THF (4 ml) at -78 °C under nitrogen atmosphere. The solution was stirred for three hours at the same temperature. Anhydrous DMF (361 μ l, 5.26 mmol) was added to the reaction mixture. The solution was stirred for one hours and then allowed to warm to room temperature. Distilled water (4 ml) and a 2 M solution of HCl (1.5 ml) were added. The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from petroleum ether (40 – 60 °C) to give the *title compound* **14c** (103 mg, 35.3%) as a yellow powder; R_f 0.81 [Hexane-ethyl acetate (10:1)]; mp. 55 °C; IR v_{max} (nujol)/cm⁻¹ 1682 (CO), 1618, 1494, 1379, 1071; ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 10.51 (2H, s, -*C*HO), 7.43 (2H, s, *-H*₃ and *-H*₆), 4.09 (4H, t, J 7.1, -OCH₂CH₂CH₂CH₃), 1.80 (4H, quintet, J 7.1, -OCH₂CH₂CH₂CH₃), 1.52 (4H, sextet, J 7.1, -OCH₂CH₂CH₂CH₃), 0.98 (6H, t, J 7.1, -OCH₂CH₂CH₂CH₂CH₃); ¹³C-NMR (67.5 MHz, CDCl₃^{*}) δ_{C} : 190.18 (*-C*HO), 112.18 (*C*₃ and *C*₆), 69.40 (-OCH₂CH₂CH₂CH₃); found (EI) 279.156 [M + H⁺], C₁₆H₂₃O₄ requires 279.1591; m/z (EI) 279 (15%, M⁺), 250 (10%, M + H⁺-CHO), 164 (100%, M⁺-2 C₄H₉), 135 (40%, M⁺-[CHO+2 C₄H₉]); CHN requires for C₁₆H₂₂O₄: C 69.04%, H 7.97%; found: C 67.52%, H 8.46%.

* C_q are not detectable because of the poor solubility of **14c** in CDCl₃.

2,5-Di(benzyloxy)terephthalaldehyde 14d

n-BuLi (2.78 ml, 1.6 M in hexane, 4.46 mmol) was added to a solution of 1,4dibromo-2,5-di (benzyloxy)benzene **13d** (400 mg, 0.89 mmol) in anhydrous THF (10 ml) at - 78 °C under nitrogen atmosphere. The solution was stirred for two hours at the same temperature. Anhydrous DMF (346.8 μ l, 4.46 mmol) was added to the reaction mixture. The solution was stirred for 30 minutes and then allowed to warm to room temperature. Distilled water (4 ml) and HCl 2 M (1.5 ml) were added. The solution was extracted with diethyl ether (3 x 20 ml). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was recrystallised from petroleum ether (40 - 60 °C) to give the *title* *compound* **14d** (293 mg, 95.1%) as a yellow powder; $R_f 0.86$ [Hexane-Ethyl acetate (10:1)]; mp. 119-120 °C; IR v_{max} (nujol)/cm⁻¹ 1677 (-CHO), 1463, 1378, 1136; ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 10.54 (2H, s, -*CHO*), 7.56 (2H, s, -*H₃* and -*H₆*), 7.42 (4H, d, J 5.3 -*H₂*·), 7.40 (4H, dd, J₁ 6.4, J₂ 5.3, -*H₃*·), 7.35 (2H, d, J 6.4, -*H₄*·), 5.19 (4H, s, -OC*H*₂Ph); ¹³C-NMR (67.5 MHz, CDCl₃) δ_{C} : 189.90 (-CHO), 155.74 (*C*₂-O and *C*₅-O), 136.35 (*C*₁·), 129.46 (*C*₂· or *C*₃· or *C*₄·), 129.13 (*C*₂· or *C*₃· or *C*₄·), 128.26 (*C*₂· or *C*₃· or *C*₄·), 119.04 (*C*₁-CHO and *C*₄-CHO), 113.02 (*C*₃ and *C*₆), 71.73 (-OCH₂Ph); *m*/*z* (EI) 347 (45%, M⁺), 288 (70%, M⁺-2 CHO), 255 (20%, M⁺- C₇H₇); CHN requires for C₂₂H₁₈O₄: C 76.29%, H 5.24%; found C 76.14%, H 5.35%.

2,5-Di[(4'-fluorobenzyl)oxy]terephthalaldehyde 14e

n-BuLi (2.00 ml, 1.6 M in hexane, 3.09 mmol) was added to a suspension of 1,4dibromo-2,5-di[(4'-fluorobenzyl)oxy]benzene **13e** (300 mg, 0.62 mmol) in anhydrous THF (12 ml) at - 78 °C under nitrogen atmosphere. The solution was stirred for two hours at the same temperature. Anhydrous DMF (241 µl, 3.09 mmol) was added to the reaction mixture. The solution was stirred for 30 minutes and then allowed to warm to room temperature. Distilled water (4 ml) and a 2 M solution of HCl (1.5 ml) were added. The solution was extracted with diethyl ether (3 x 20 ml). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was recrystallised from petroleum ether (40 – 60 °C)ethyl acetate (3:2) to give the *title compound* **14e** (133 mg, 56.3%) as a yellow powder; R_f 0.85 [Hexane-Ethyl acetate (10:1)]; mp. 130-131 °C; IR v_{max} (nujol)/cm⁻¹ 1678 (CO), 1460, 1378, 1224; ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 10.52 (2H, s, -CHO), 7.54 (2H, s, -*H*₃ and -*H*₆), 7.42 (4H, dd, J₁ 6.5, J₂ 2.4, *H*₂), 7.09 (4H, dd, J₁ 6.5, J₂ 6.4, *H*₃·), 5.16 (4H, s, -OCH₂-(*p*-F)C₆H₄); ¹³C-NMR (67.5 MHz, CDCl₃^{*}) δ_C : 189.11 (- CHO), 129.81 ($C_{2'}$, ${}^{3}J_{CF}$ 8.1), 115.84 ($C_{3'}$, ${}^{2}J_{CF}$ 21.8), 112.61 (C_{3} and C_{6}) 70.74 (-OCH₂-(p-F)C₆H₄); found (EI) 382.1038 [M⁺], C₂₂H₁₆F₂O₄ requires 382.1011; m/z (EI) 382 (10%, M⁺), 273 (10%, M⁺-C₇H₆F), 106 (100%, M⁺-[2 (C₇H₆F)+ 2 (CHO)]; CHN requires for C₂₂H₁₆F₂O₄: C 69.11%, H 4.22%; found: C 65.14%, H 4.04%.

 C_q are not detectable because of the poor solubility of **14e** in CDCl₃.

1-(2'-methoxyethoxy)-4-methoxybenzene 17d

To dimethyl sulphoxide (30 ml), potassium hydroxide powder (4.5 g, 80.55 mmol) was added. After stirring for 5 minutes, 4-methoxyphenol 16 (2.5 g, 20.14 mmol) was added, followed immediately by the 2-chloroethyl methyl ether (3.7 ml, 3.83 g, 40.28 mmol) and sodium iodide (30 mg). Stirring was continued for four hours, after which the mixture was poured into distilled water (100 ml) and extracted three times with dichloromethane (3 x 50 ml). The combined organic extracts were washed with distilled water (5 x 200 ml), dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash cromatography on silica gel eluting with ethyl acetate-hexane (1:1) to give the *title compound* **17d** (1.5 g, 41.6%) as an oil; $R_f 0.85$ [Ethyl acetate-hexane (1:1)]; IR v_{max} (liquid)/ cm⁻¹ 1508 (C=C Ar), 1456, 1234 (O-CH₂-); ¹H-NMR (270 MHz, CDCl₃) δ_H: 6.87 (2H, d, J 6.2, -H₂ or -H₃), 6.81 (2H, d, J 6.2, -H₂ or -H₃), 4.02 (2H, AA' part of AA'XX' system, N 9.2, -OCH₂CH₂-OCH₃), 3.71 (3H, s, -CH₂OCH₃ or Ph-OCH₃), 3.68 (2H, XX' part of AA'XX' system, N 14.0, -OCH₂CH₂-OCH₃), 3.04 (3H, s, -CH₂OCH₃ or Ph-OCH₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_C: 154.25 (*C*₄-OCH₃), 153.24 (*C*₁-OCH₂CH₂OCH₃), 115.75 (C₂-H), 114.76 (C₃-H), 71.25 (-OCH₂CH₂OCH₃), 67.98 (-OCH₂CH₂OCH₃) 59.09 (-OCH₂CH₂OCH₃), 55.56 (-OCH₃); found (EI) 183.1019, C₁₀H₁₅O₃ requires 183.1016; m/z (EI) 183 (100%, M + H⁺), 123 (95%, M⁺-C₃H₇O); CHN requires for C₁₀H₁₄O₃: C 65.91%, H 7.74%; found: C 64.05%, H 7.78%.

1,4-Dibromo-2-propoxy-5-methoxybenzene 18b

A solution of bromine (618 µl, 1.9 g, 12.04 mmol) in glacial acetic acid (3 ml) was added to a solution of 1-propoxy-4-methoxybenzene 17b (1 g, 6.02 mmol) and anhydrous potassium acetate (112.4 mg, 1.4 mmol) in glacial acetic acid (10 ml) at 17 °C. The solution was stirred for two hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from petroleum ether to give the *title compound* **18b** (1.71 g, 87.7%), as light yellow powder; R_f 0.74 [Ethyl acetate-hexane (1:1)]; mp. 69 °C; IR v_{max} (nujol)/ cm⁻¹ 1495 (C=C), 1460, 1364, 1270 (O-CH₂-), 1067, 785 (C-Br); ¹H-NMR (270 MHz, CDCl₃) δ_H: 7.09 (2H, s, -H₃ and -H₆), 3.91 (2H, t, J 7.6, -OCH₂CH₂CH₃), 3.84 (3H, s, -OCH₃), 1.84 (2H, sextet, J 7.6, -OCH₂CH₂CH₃), 1.05 (3H, t, J 7.6, -OCH₂CH₂CH₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_C: 151.62 (C_2 or C_5), 150.92 (C_2 or C_5), 119.45 (C_3 or C_6), 117.68 (C_3 or C_6), 112.03 (C_1 or C₄), 110.96 (C₁ or C₄), 72.43 (-OCH₂CH₂CH₃), 57.58 (-OCH₃), 22.93 (-OCH₂CH₂CH₃), 10.91 (-OCH₂CH₂CH₃); *m/z* (CI) 327/ 325/ 323 (100%, M + H^{+ 81}Br, ⁷⁹Br), 285/283/281 (45%, M + H_2^{2+81} Br- C₃H₇), 246/244 (20%, M + H^{+81} Br-⁸¹Br); (EI) 326/ 324/ 322 (30%, $M^{+81}Br$, ⁷⁹Br), 284/ 282/ 280 (100%, $M + H^{+81}Br$ - C₃H₇), 269/267/265 (40%, M + H^{+ 81}Br, ⁷⁹Br - C₄H₁₀); CHN requires for C₁₀H₁₂Br₂O₂: C 37.07%, H 3.73%; found: C 37.08%, H 3.74%.

1,4-Dibromo-2-(benzyloxy)-5-methoxybenzene 18c

A solution of bromine (479 μ l, 1.49 g, 9.33 mmol) in glacial acetic acid (3 ml) was added to a solution of 1-(benzyloxy)-4-methoxybenzene **17c** (1g, 4.67 mmol) and

anhydrous potassium acetate (87.1 mg, 1.06 mmol) in glacial acetic acid (12 ml) at 17 °C. The solution was stirred for 4 hours at the same temperature. The mixture was poured into distilled water (100 ml). The precipitate was filtered and dried under reduced pressure. The residue was recrystallised from petroleum ether to give the *title compound* **18c** (1.37 g, 79.1%) as a light yellow powder; R_f 0.83 [Ethyl acetate-hexane (1:1)]; mp. 116 °C; IR v_{max} (nujol)/ cm⁻¹ 1508 (C=C), 1457, 1379, 1292 (O-CH₂-), 1113, 763 (C-Br); ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 7.46 (2H, d, J 6.3, *-H*₂·), 7.41 (2H, dd, J₁ 6.3, J₂ 13.3, *-H*₃·), 7.38 (H, d, J 13.3, *-H*₄·), 7.17 (1H, s, *-H*₃ or *-H*₆), 5.05 (2H, s, *-OCH*₂Ph), 3.83 (3H, s, *-OCH*₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_{C} : 151.13 (*C*₂ or *C*₅), 149.84 (*C*₂ or *C*₅), 136.38 (*C*₁·), 128.83 (*C*₃·), 128.35 (*C*₄·), 127.47 (*C*₂·), 119.68 (*C*₃ or *C*₆), 117.16 (*C*₃ or *C*₆), 111.93 (*C*₁ or *C*₄), 110.56 (*C*₁ or *C*₄), 72.27 (*-OCH*₂Ph), 57.17 (*-OCH*₃); *m*/*z* (CI) 374/ 372/ 370 (100%, M^{+ 81}Br, ⁷⁹Br), 294/ 293/ 291 (80%, M^{+ 81}Br-⁸¹Br); CHN requires for C₁₄H₁₂Br₂O₂: C 45.20%, H 3.25%; found: C 46.14%, H 3.21%.

1,4-Dibromo-2-(2'-methoxyethoxy)-5-methoxybenzene 18d

A solution of bromine (570 µl, 1.77 g, 11.09 mmol) in glacial acetic acid (3 ml) was added to a solution of 1-(2-methoxyethoxy)-4-methoxy benzene **17d** (1 g, 5.55 mmol) and anhydrous potassium acetate (103 mg, 1.26 mmol) in glacial acetic acid (12 ml) at 17 °C. The solution was stirred for three hours at the same temperature. The mixture was poured into distilled water (100 ml) and extracted with CH_2Cl_2 (3 x 30 ml). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was recrystallised from petroleum ether to give the *title compound* **18d** (1.53 g, 81.4%) as a light yellow powder; R_f 0.86 [Ethyl acetate-hexane (1:1)]; mp. 42 °C; IR v_{max} (nujol)/ cm⁻¹ 1508 (C=C Ar), 1456, 1234

(O-CH₂-); ¹H-NMR (270 MHz, CDCl₃) δ_{H} : 7.15 (1H, s, -*H*₃ or -*H*₆), 7.07 (1H, s, -*H*₃ or -*H*₆), 4.10 (2H, AA'XX' part of AA'XX' system, N 9.4, -OC*H*₂CH₂-OCH₃ or -OCH₂C*H*₂-OCH₃), 3.83 (3H, s, Ph-OC*H*₃), 3.75 (2H, XX' part of AA'XX' system, N 9.4, -OC*H*₂CH₂-OCH₃), 3.83 (3H, s, Ph-OC*H*₃), 3.75 (2H, XX' part of AA'XX' system, N 9.4, -OC*H*₂CH₂-OCH₃ or -OCH₂C*H*₂-OCH₃), 3.75 (2H, XX' part of AA'XX' system, N 9.4, -OC*H*₂CH₂-OCH₃ or -OCH₂C*H*₂-OCH₃), 3.45 (3H, s, -OCH₂CH₂-OC*H*₃); ¹³C-NMR (67.5 MHz, CDCl₃) δ_{C} : 151.39 (*C*₂ or *C*₃), 150.40 (*C*₂ or *C*₃), 119.84 (*C*₃ or *C*₆), 117.25 (*C*₃ or *C*₆), 112.00 (*C*₁ or *C*₄), 110.76 (*C*₁ or *C*₄), 71.23 (-OCH₂CH₂OCH₃), 70.46 (-OCH₂CH₂OCH₃), 59.72 (-OCH₂CH₂OCH₃), 57.26 (-OCH₃); *m/z* (EI) 342/340/338 (50%, M^{+ 81}Br, ⁷⁹Br), 284/282/280 (100%, M + H^{+ 81}Br, ⁷⁹Br-C₃H₇O); CHN requires for C₁₀H₁₂Br₂O₃: C 35.32%, H 3.56%; found: C 35.22%, H 3.54%.